INSTITUTO DE ERRORES
INNATOS DEL METABOLISMO I.E.I.M.

FACULTAD DE CIENCIAS, PONTIFICIA UNIVERSIDAD JAVERIANA

 

>>Volver al menú de cartillas

El Instituto de Errores
>
Información general
>
Programas de Investigación
>
Servicios
>

Docencia

>
Exámenes de Laboratorio
>
Asociaciones con otras
Instituciones
>
Personal
>
Mapa de ubicación
Los EIM
>
los Errores Innatos del Metabolismo
>
Programa de Autoaprendizaje
>
Cartillas para Padres de Familia
>
Enlaces
Contáctenos
Volver a inicio
Pontificia U. Javeriana
 

INTRODUCCION


La fenilcetonuria es una enfermedad genética autosómica recesiva; hace parte del grupo de desórdenes conocidos como hiperfenilalaninemias, las cuales se definen como las concentraciones de fenilalanina sérica por en¬cima de 2 mg/dl (0,12 mM).

 

CARACTERÍSTICAS CLÍNICAS

Los síntomas tempranos de la enfermedad incluyen irritabilidad excesiva e hiperactividad, ordinariamente acompañadas de un olor a moho o a ra¬tón mojado. Dado que con frecuencia los padres son los primeros en notar dicho olor, es muy importante que el médico pregunte a los padres de los pacientes a éste respecto; ésta asociación se considera habitual más no obli¬gatoria. El paciente puede presentar alteraciones neurológicas no específi¬cas como hiper o hipotonía, temblor, nistagmos, paresias y crisis convulsivas. El desarrollo intelectual parece normal hasta los 3 ó 5 meses de edad, cuando el niño muestra síntomas de apatía y pérdida de atención, alternados con los episodios de irritabilidad. Cuando el paciente crece, aproximadamente un 25% de ellos presentan convulsiones.

Desde el punto de vista dermatológico, se consideran característicos de estos pacientes la piel clara, cabello rubio y ojos azúles. Con frecuencia los niños jóvenes que no han sido sometidos a dieta presentan eczemas cutá¬neos resistentes a los tratamientos habituales, aspecto pelagroide en áreas expuestas a la luz solar y fotosensibilidad. Hay hipopigmentación del cabello y de los ojos, con respecto a los otros miembros no afectados de la familia.

FENILCETONURIA MATERNA

La fenilcetonuria en las mujeres embarazadas puede causar una serie de anormalidades congénitas en el hijo, entre los cuales cabe destacar retardo mental, microcefalia, anormalidades cardíacas y retardo en el crecimiento. Hay una clara correlación entre los niveles séricos del aminoácido, el re¬tardo mental y la microcefalia. Cuando las concentraciones de fenilalanina están entre 10 y 20 mg/dl,.más del 200/o de los hijos sufren problemas men¬tales. Dado que no se conoce con seguridad cual es la concentración de fe¬nilalanina que se puede considerar segura para el feto, cualquier evaluación por encima del nivel normal debe ser considerada potencialmente terato¬génica.

 

Las hiperfenilalaninemias son producidas por un defecto en la conver¬sión de fenilalanina a tirosina, reacción catalizada por la enzima hepática fenilalanina hidroxilasa, la cual requiere como factor la tetradihidrobiop¬terina (BH4) que es oxidada a BH2 (dihidrobiopterina); ésta última, por ac¬ción de la enzima dihidrobiopterina reductasa, es convertida de nuevo en BH4. Tanto la deficiencia en la enzima como en la BH4 interrumpen el pro¬ceso de la utilización de la fenilalanina con la consiguiente acumulación del aminoácido produciendo hiperfenilalaninemia. Se conocen cinco causas de hiperfenilalaninemia: una por efecto en la enzima fenilalanina hidroxílasa, tres por defectos en las síntesis de BH4 y una por defectos en la dihidrobiopterina reductasa.

La BH4 se requiere tambien para la hidroxilación del triptófano y la tirosina, precursores de neurotransmisores como la serotonina, y el 5-hidro-xitriptófano, por lo cual los pacientes que tienen deficiencia en dicho cofactor presentan sintomatología asociada con la deficiencia de dichos neurotransmisores. Los defectos en el cofactor representan entre el 1 y 3% de todos los casos de hiperfenilalaninemias.

Los síntomas tempranos de la enfermedad incluyen irritabilidad excesiva e hiperactividad, ordinariamente acompañado de un olor a moho. Con frecuencia los niños y jóvenes no sometidos a dieta presentan fotosensibiidad y dermatitis eczematosa resistente a los tratamientos habituales.

En la síntesis de BH4 participan 4 enzimas (El, E2, E3, E4). La deficiencia de por lo menos 2 de ellas conduce a disminución en la síntesis de BH4, la cual, además de participar en el metabolismo de la fenilalanina, inter¬viene en la síntesis de serotonina a partir del triptófano.

El bloqueo enzimático hace que se tomen caminos metabólicos alternos con producción excesiva de metabolitos como los ácidos fenil-acético, fenilpirúvico y fenil-láctico. La acumulación del fenil-acético produce el olor a moho característico de la mayoría de los pacientes no tratados.

Desde el punto de vista clínico, las hiperfenilalaninemias se clasifican en fenilcetonuria e hiperfenilalaninemias no malignas, en las cuales el metabolismo de la fenilalanina no está tan severamente comprometido y la formación de ácido fenilpirúvico es ausente o prácticamente mínima. Una parte esencial del defecto es la disminución de los niveles plasmáticos de tirosina. Los defectos de pigmentación en fenilcetonuria parecen deberse a la inhibición de la enzima tirosinasa, responsable de la producción de la mela¬nina. El sistema nervioso central en los pacientes con fenilcetonuria es quizás el más comprometido, pero hasta el momento no se ha podido clarificar la causa exacta del compromiso que se observa; sin embargo, es claro que muchos de los problemas asociados con la enfermedad estriban en problemas de las síntesis de los neurotransmisores serotonina, y 5-hidroxitriptófaflO.

En pacientes con fenilcetonuria, los niveles de fenilalanina aumentan en la sangre y otros fluídos; los niveles de metabolitos de las fenilalanina como fenil-acetato, fenil-lactato, fenil-piruvato y fenil-etilamina, que usualmente se encuentran en pequeñas cantidades, se aumentan. La restricción dieté¬tica de fenilalanina en pacientes fenilcetonúricos, reduce significativamente los niveles de fenilalanina y sus metabolitos en sangre. La tirosina en una persona normal no es esencial pues se puede sintetizar a partir de la fe¬nilalanina, pero dado que la conversión de estos aminoácidos está bloqueada en estos pacientes, la tirosina se convierte en un aminoácido esencial por lo cual se debe suministrar en mayor cantidad en la dieta.

Los defectos en el cofactor deben diagnosticarse muy tempranamente, puesto que el tratamiento es diferente al de la fenilcetonuria clásica. La siguiente tabla resume las causas y hallazgos en las hiperfenilalaniflernias.

TABLA 1
Causas de Hiperfenilalaninemia

Características Bioquímicas
Fenilalanina-hidroxilasa
Sangre Fen 1,2 mmol/L
Sangre Fen 0,480-1,200 mmol/L
Benigno
Síntesis Cofactor o Actividad

GTP ciclohidrolasa
6-PTS
DHPR

Fumarilacetato hidroxilasa (Tirosinemia 1)
Sangre Fen 0,20-0,480 mmol/L

Elevación variable de Fen en sangre; Síntesis deficiente de neurotransmisores derivados de Tir y Trp.

Fen, Tir, Met elevados en plasma.

Fen = Fenhlalanina. Tir = Tirosina. Met = Metionina. Trp = Triptófano.
GPTS = ~-piruvoiltetrahidropterin sintetasa. DHPR Dihidropteridina reductasa.
Estas dos enzimas son indispensables en la síntesis de la BH4.

Volver al Indice


TRATAMIENTO

La fenilalanina es un aminoácido esencial. La ingesta diaria de fenilala¬fina es usualmente superior a los requerimientos; por lo tanto, en estos pacientes se requiere ajustar muy bien la dieta para que suministre las can¬tidades indispensables de éste aminoácido y su suplemento de proteína que no contenga fenilalanina pero que suministre la cantidad necesaria de los otros aminoácidos esenciales. Dado que la dieta es clave del éxito del tra¬tamiento, ésta debe iniciarse inmediatamente se haga el diagnóstico.

• Defectos
Severo Atípico

Inicialmente la dieta consiste fundamentalmente en un producto comer¬cial libre de fenílalanina y con suplementos vitamínicos; los jugos y ali¬mentos sólidos se introducen en la forma usual. Puesto que los requerimientos energéticos y de proteínas dependen del peso, la dieta debe ajustarse frecuentemente; para ello se requiere, por lo tanto, mucha ha¬bilidad y experiencia. Aun cuando en años pasados se sugería que la dieta podía suspenderse entre los diez o quince años de edad, la tendencia según los últimos estudios es mantener al paciente en éste régimen durante toda la vida.

Los preparados libres de fenilalanina se distribuyen con los nombres de Lofenalac y Phenyl Free de Mead Johnson; PK1, PK2 y PK3 fabricado por Milupa; Maxamaid y Mexemum de Laboratorios Ross y Fenilen de Nestlé.

Desafortunadamente estos productos no se hallan disponibles en el mer¬cado colombiano y es necesario crear conciencia dentro de las casas comer¬ciales para que en alguna forma se solucione éste problema que impide la posibilidad del tratamiento oportuno de los pacientes.

En el niño. Todos los recién nacidos con concentraciones de fenilala¬fina superiores a 6 mg/dL deben ser sometidos a restricción de proteínas. El riesgo de daño cerebral aumenta significativamente con niveles de fe¬nilalanina superiores a quince mg/dl.

Los requerimientos de fenilalanina, proteína y energía para cada niño son calculados sobre bases individuales. Las recomendaciones de vitaminas y minerales son las mismas que para un niño no fenilcetonúrico, en tanto que las necesidades de proteínas están ligeramente por encima de las su¬gerencias para un niño normal: 2,4 g/kg de peso por día, durante los pri¬meros meses de edad, y 2,5 g/kg de peso por día, de los seis a los doce meses de edad. Durante el primer año de vida las recomendaciones para un niño afectado corresponden a 4,2 g/kg de peso por día durante los tres primeros meses y 2,5 g/kg de peso por día, de los seis a los doce meses. Después de los primeros años de vida las recomendaciones son las mismas que para los niños normales, según el Comité de Nutrición de la Academia Americana de Pediatría.

En fenilcetonuria materna. Los niveles de fenilalanina séricos en la madre deben normalizarse antes de la concepción y se sugiere que el mé¬dico recomiende a la paciente posponer la decisión del embarazo hasta tantosegún el Comité de Nutrición de la Academia Ameri¬cana de Pediatría.

los niveles de fenilalanina en sangre no estén por debajo de 10 mg/dL. Durante el embarazo se deben controlar los niveles de fenilalanina y tirosina. La tolerancia materna a la fenilalanina es aproximadamente de 600 a 800 mg por día; por lo tanto, se puede recomendar a la madre entre 15 y 20 g. de proteína natural y el resto debe ser suministrado mediante sustitutos proteícos.

En deficiencia de BH4. Los pacientes con deficiencia del cofactor no responden a la sola restricción de fenilalanina. El suministro de BH4 oral o intravenoso evita las anormalidades bioquímicas. Sin embargo, dado que la BH4 no atraviesa fácilmente la barrera hematoencefálica, se recomienda la restricción de fenilalanina combinada con la administración de BH4 y el suministro de los neurotransmisores L-Dopa, Carbidopa, y 5-hidroxitriptófano ha sido ensayado con éxito; sin embargo, dados los riesgos que conlleva,se recomienda tener mucha precaución con éste tratamiento en pacientes en los cuales se está desarrollando el cerebro.

El diagnóstico se debe hacer en el recién nacido e inmediatamente se debe comenzar el tratamiento. Para el efecto se utilizan fórmulas bajas en fenilalanina que contienen suplementos vitamínicos. Los niveles permisibles de fenilalanina se alcanzan con alimentos convencionales.

La frecuencia de la fenilcetonuria clásica se considera en promedio de 1 en 10.000 personas; sin embargo, hay una gran variabilidad étnica; por ejemplo, la incidencia de fenilcetonuria clásica en Alemania es de 1 en 9.000, en Lóndres de 1 en 18.000, en Noruega de 1 en 3.700, en Japón de 1 en un millón y en Suecia de 1 en 38.000.

Hasta el momento se han identificado en el Centro de Investigaciones en Bioquímica de la Universidad de los Andes, cuatro familias con un total de siete individuos vivos afectados. Estos son los primeros casos estudiados bioquímicamente en Colombia.

TAMIZAJE EN RECIEN NACIDOS

En los países con sistema de salud avanzado de Norte América, Europa y Latinoamérica (Cuba), es obligatorio practicar los exámenes de tamizaje para fenilcetonuria en todos los recién nacidos. Esto se hace generalmente mediante la prueba de Guthrie, (ver pruebas bioquímicas), pues para ella sólo se requiere impregnar un papel de filtro especial con una gota de sangre tomada por punción capilar, lo cual facilita la recolección en neonatos. Esta muestra presenta además la ventaja adicional de ser estable a temperatura ambiente, por lo menos durante dos semanas, lo cual facilita el envío por correo de las muestras. Los resultados de la prueba de Guthrie deben confirmarse mediante lacuantificación de los nivels plasmáticos de fenilalanina. Se recomienda tomar la muestra del tercero al cuarto día después del nacimiento, pues los niveles de aminoácidos se elevan progresivamente después del nacimiento, y en muestras tomadas durante las primeras 24 horas, es frecuente encontrar falsos negativos. Los niños alimentados con leche materna muestran elevaciones del aminoácido más tempranamente que los que se alimentan con fórmulas, probablemente debido al mayor contenido de proteínas en el calostro.

En un estudio llevado a cabo en Estados Unidos, durante los años 1973-1977, examinando 1.295.292 recién nacidos, solo se encontraron 89 individuos afectados. Sin embargo, el costo global de los exámenes de ta¬mizaje en los recién nacidos está muy por debajo de lo que costaría man¬tener institucionalizados los pacientes afectados de por vida.

PRUEBAS BIOQUIMICAS


El estudio de los pacientes se hace mediante las siguientes pruebas:

Cloruro férrico: Se basa en la reacción del cloruro férrico con el ácido fenil pirúvico excretado en la orina de los pacientes. Un color verde es indicativo de una alteración en el metabolismo de fenilalanina. Esta prueba puede ser interferida por salicilatos, fenotiacidas, antipirinas, ácido nicotínico, metabolitos de la L-Dopa, yodoclorhidroxiquinona, bilirrubina, tu¬mores, etc., por lo cual es necesario utilizar otros métodos. Dado que algunas pruebas dan falso positivos con algunos compuestos y no con otros, en nues¬tro Laboratorio empleamos los métodos de Renuart5, Mulemans~5 y Perry’.

Dinitrofenil hidrazina: Los compuestos alfa ceto como el ácido fenil acético y el ácido fenil láctico reaccionan con la 2-4 dinitrofenil hidrazina formando compuestos de hidrazonas. La reacción es positiva cuando se forma una coloración amarilla con precipitado blanco.

Cromatografía de aminoácidos en orina: En éste procedimiento los aminoácidos son separados por cromatografia en papel de filtro Whatman No. 5, usando butanol-ácido acético-agua en proporción de 60:15:25; luego se visualizan mediante la reacción con ninhidrina~.

Ensayo Microbiológico de Guthrie: El ensayo se realiza en una gota de sangre que puede ser recogida en papel de filtro, lo cual hace muy fácil su transporte. La prueba se basa en que el crecimiento del Bacilus subtilis es inhibido por la beta-2-tienilalanina; ésta inhibición es contrarrestada por la fenilalanina, el ácido fenilpirúvico y el ácido fenilacético, de manera que el crecimiento del bacilo se hace en forma de un halo alrededor del papel que contiene la sangre del paciente y es directamente proporcional a la can¬tidad de metabolitos de fenilalanina. La estimulación semicuantítativa del aminoácido se hace mediante el empleo de discos de papel de filtro que contienen fenilalanina de concentración conocidaw.

Cromatografía de aminoácidos en plasma: Al igual que en orina, la presencia de fenilalanina en la sangre se puede detectar mediante separa¬ción de los aminoácidos en una placa de acetato de celulosa usando como solvente butanol-acetona-agua-ácido acético, en proporción de 35:35:23:7. La coloración se hace con ninhidrina en butanol-acetona en proporción de 6.8:46:5:46.5. Este método tiene la ventaja de utilizar sólo 2 mL de plasma o suero

Medición fluorométrica de fenilalanina. Se hace por el método de Tocci modificado~’, el cual se basa en la producción de fluorescencia cuando la fenilalanina reacciona con cpbre y ninhidrina en presencia del dipéptido L-Leucina-L-Alanina.

Fluorometría para tirosina. Se basa en la reacción de la tirosina con el 1-nitroso-2-naftol, formando un compuesto fluorescente9.

Determinación usando el analizador de aminoácidos. Esta prueba tiene la ventaja de permitir conocer la concentración de cada uno de los aminoácidos que usualmente se encuentran en el suero. Sin embargo, la prueba es costosa y aún cuando en algunos países se práctica como parte de los exámenes de tamizaje, en medios como el nuestro se recomienda practicarlo sólo en pacientes en los cuales las pruebas de tamizaje son positivas~

Determinación de pterinas. El análisis de las pterinas se puede hacer por cromatografla líquida de alta resolución (HPLC), usando tres sistemas de solvente metanol-agua, isopropanol, metanol, ácido acético. Este método permite separar mezclas complejas de pterinas. Algunos métodos modernos permiten la determinación de los metabolitos oxidados y reducidos, simultáneamente mediante el uso de detectores electroquímicos y fluorométricos.

Prueba de sobrecarga con BH4. En pacientes con sospecha de deficien¬cia en el cofactor se requiere la prueba de sobrecarga con BH4, que consiste en la ádministración de una dosis de 20 mg/kg de BH4 al paciente. En per¬sonas normales los niveles de fenilalanina plasmática descienden, lo mismo que en los pacientes que presehtan problemas en la síntesis de BH4. Los pacientes con deficiencia en la enzima dihidrobiopterina reductasa, la cual regenera la BH4 a partir del BH2 y mantiene funcional los sistemas de fe¬nilalanina, tirosina y triptófano, ordinariamente no responden a la BH4 con una disminución en los niveles de fenilalanina.

BIOLOGIA MOLECULAR DE LA FENILCENTORUNIA

Dado que la enzima fenilalanina hidroxilasa se expresa sólo en hígado, su actividad no puede medirse en otros tejidos. Por lo tanto, el diagnóstico prenatal realizando mediciones enzimáticas en células del líquido amniótico o vellosidades coriónicas, no es posible y la identificackm de portadores es dificil. En contraste, puesto que el DNA está presente en cualquiera de las células y en cualquier época de desarrollo, el análisis del DNA permite utilizar cualquier tipo de células, aún cuando no se exprese la enzima.

Desde que Savio Woo en 1984 clonó el cDNA para la fenilalanina hidro¬xilasa, ha sido posible realizar estudios moleculares y diseñar sondas de DNA que han permitido mejorar los métodos de diagnóstico, la identifi¬cación de portadores y el diagnóstico prenatal de pacientes con fenilceto¬nuria. En familias caucasoides en las cuales existe un individuo afectado, ha sido posible realizar exitosamente estos exámenes en un 900/o de los casos.

Sin embargo, estos estudios son todavía costosos (700 a 1.000 dólares el estudio familiar en Estados Unidos) y en caso de que se quiera hacer diagnóstico prenatal es necesario hacer los estudios de la familia varias semanas antes de proceder a hacer la biopsia de vellosidades coriónicas.

El diagnóstico prenatal en líquido amniótico o vellosidades coriónicas, así como la identificación de portadores en libroblastos, se puede hacer actualmente mediante el uso de son¬das de DNA.

En el Centro de Investigaciones en Bioquímica hemos hallado cuatro familias en las cuales se han identificado siete individuos afectados por la fe¬nilcetonuria, cinco adultos y solamente dos niños, que en el momento se encuentran en tratamiento. La respuesta, especialmente en uno de los ca¬sos, es muy satisfactoria.

En el momento en algunos pacientes se han realizado todas las pruebas necesarias para precisar si el defecto se encuentra en la enzima o en la coenzima, y hemos comenzado ‘los estudios de biología molecular para precisar la naturaleza del defecto a nivel del gen.

El Programa PREGEN ha venido haciendo el tamizaje para fenilcetonuria e hipotiroídismo congénito en recién nacidos en la ciudad de Bogotá. Sería conveniente que estos estudios se ampliaran a todos los recién nacidos de la capital y otras ciudades del país.
En los países con sistema de salud avanzados, es obligatorio realizar pruebas de tamizaje para fenilceton urja en todos los recién nacidos.