Del bosque al laboratorio tras el cromo que transportan las aguas residuales de las curtiembres

Con tres especies de hongos y un auidadoso proceso de exploración, un equipo del Grupo de Investigación de Biotenología Ambiental e Industrial de la Universidad Javeriana, al que pertenece Aura Marina Pedroza, logra significativos resultados.

Por Marisol Cano Bisquets

Vive a sus anchas en los bosques. Le encanta degradar la madera de los árboles. Es bello. Al crecer farma anillos concéntricos de variadísimos colores dando origen a una especie de abanico, OCn lo que se hace aún más llamativo. Es el Trametes versicolor, un hongo de aproximad amentediez centúmetros de alturaque, si se tiene bien desarrollada la capacidad de observación, es posible encontrar en muchos bosques de Colombia.

Como al Trametes versicolor, al Pleurotus ostreatus, la rica orellana de dulce sabor y suave olor fúngico que cada día se consigue con mayor frecuencia en los mercados del país, también le gusta comer troncos. Y también vive a sus anchas en los bosques. Los acolchados que producen las coníferas en parques como el de la represa del Neusa, se convierten en uno de sus hábitats faveritos.

El tríolocompleta una cepa del Phanerochaete chrysosporium donada, para hacer parte de la historia que aquícomienza, por la doctora Refugio Rodríguez Vázquez, directora del Laboratorio de Compuestos Xenobióticos del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional de México, comoparte de un convenio internacional de cooperación ocn la Universidad Javeriana.

Estos tres degradadores de madera tienenotros gustos. Lescomplacetransformar contaminantes asociados a plaguicidas,
hidrocarburos, explosivos y colorantes. Lo hacen porla similitud estructural quetienen ciertos contaminantes con los anillos aromáticos quehacen parte delamadera. Ellos asumen que se trata de algo parecido a lo quenormalmente usan para crecer yempiezan a hacer cambios en los contaminantes hasta llegar a degradarlos completamente. Algunos de estos compuestos ademástienen color. Algoque parecegustarle a los hongos, pues al ponerse en contacto con ellos son capaces de actuar hasta lograr, en el caso delas aguas residuales, el color propio del agua potable.

No comen metales, sin embargo, sus paredes se prestan para capturarlos por la capacidad que tienen de actuar como una cinta pegante. Los hongos que crecen sobrelamadera formanunasestructuras que parecen finas motas de algodón, llamadas micelio. La gran ventaja es que a él pueden adherirse los metales pesados, convirtiéndose esta en una novedosa estrategia en el tratamiento de aguas residuales.

El triodehongos tieneotracualidad: son buenos con los investigadores al dejarse cultivar en los laboratorios en condiciones controladas.

Los hongos cambian de hábitat

Al llegar de su doctorado en Ciencias con énfasis en Biotecnología desarrollado en México, la bacterióloga colombiana Aura Marima Pedroza Rodríguez, se planteócontinuar susinvestigacionesen estalinea, enla queyatenía antecedentes con su trabajo de
tesis doctoral, peroesta vez haciendo énfasis en la experimentación oon hongos para la remoción demetales. Una problemática de ampliocal ado connol a del efectoque tieneel cromo utilizado en losprocesos de curtiembres solreel agua, seconvirtió en el centro de sus preguntas y sus preocupaciones.

Enel procesodecurtido de pieles, explica la investigadora, hayunaetapacrítica ouandoseutilizanlas sales decromocon las que se logra dar resistencia al cuero para evitar queserasguey prepararlo asíparalasfases posterioresdetratamienta. El cromose une al cueroyloquehacen loscurtidoreseslavar una yotra vez las pieles para ir paulatinamente eliminando el exceso del metal. Es en este momento cuando el cromo va a las aguas residuales y puede generar problemas ambientales y de salud para los humanos y los animales sinose establecen mecanismos yplanes para removerlo

El estudio inicia cultivando los tres hongos bajo ocndiciones controladas y sin ponerlos en contacto con el metal. Como dice Pedroza, "los teníamos consentidos". El trionosabe aloquetendráque exponerse después: las pruebas de tolerancia. Ya en el laboratorio, los investigadores empiezan a poner los hongos en contacto con las sales decromo, y monitorean las reacciones que sedan de acuerdocon la cantidad demetal al que son expuestos. Poco a poco se incrementa la concentración para hacerlos más resistentes.

Gracias aestosensayosfueposibleconvetir cepas normales en cepashipertoler antes.

Arriba, muetras de la traneformasión que su fen las aguzs reidusles conla intervención de loshongos. Abaja, tiorresctor uflirado en el proces.

- LOS HONGOS UTILIZADOS EMPLEAN LOS COLORANTES Y ABSORBEN METALES PARA CUMPLIR FUNCIONES MUY BENEFICAS EN EL TRatamiento de aguas residuales.

Luego de dos meses de experimentación, encontraron, por ejemplo, que el Phanerochaete chrysosporizm resistia concentraciones muy altas decromo, lo queresultaba muy satisfactorioya que el agua delas curtiembres suele tenerlas.

Una vez los hongos se han adaptado a estaren rel acióncon las sales decromo, los investigadores proceden a introducirlos en las aguasresiduales provenientes de empresas decurtiembresdela zona de Villapinzón en Cundinamarca, que apoyaron esta fase del estudio. Un pasopreviofuecaracterizar detalladamente el agua residual que venía de allí, de tal manera que fuera posible establecer qué tan alta era su contaminación y poder así contparar, con los datos experimentales, si efectivamenteloshongos removían el metal. Fue entonces cuando los investigadores supieron cuál era el reto que enfrentaban en materia de limpieza de aguas residuales.

Entre tanto, una gran producción de hongos altamente tolerantes al cromo está lista en el laboratorio para someterse a las nuevas pruebas. Es el momento de ponerlos en contacto onn el agua residual dentro de tanques llamados biorreactores, muy parecidos a los empleados para almacenar el agua potable de las casas. "Con el fin de que los hongos puedan estar en oontacto
permanente con el metal, se utilizan compresores para inyectar aire y se van monitoreando las transformaciones que sufre el agua con el paso del tientpo', explica Pedroza. De esta manera, se logra remover metales, colcr, demanda quimica de oxígeno (DQO) y demanda biológica de wigeno(DBO) hasta alcanzar loslímites de vertimiento que se ajustan a lo establecido por la legislación nacional.

En palabras sencillas, después de someterse a la acción de los hongos, el agua residual pasa de verde oscura, casi negra, a verde clara; de gran concentración de cromo a baja concentración de cromo y de alta presencia de demanda biológica de oxígeno y de demanda química de oxígeno a presencia adecuada. Todos losparámetros cumpliendola norma. Dosresultados significativos deesta in vestigación son, primero, producir una cepa hipertolerante al crano, no repor tad a antes en la literatura científica, quelogra aguantar 85 mil partes por millón decramoy, segundo, remover el cromo de las aguas residuales; en materia de color dejar el agua apta para vertimiento en el alcantarillado y con una $\mathrm{DBO}_{\mathrm{s}}$ y una DQO adecuados a lo establecidopor la noma.

Lo que sucede posterionmente con el cromo removido que queda adherido a la biomasa de los hongos es fuente de otras
lineas de investigación para quienes trabajan en nuestro país con metales pesados, dado que éstos no se evaporan ni se diluyen. "Yo puedo retirarlo del agua y el agua queda menos contaminada, pero dahora qué hago con el subproducto que sale del tratamientor", es una pregunta que ya se ha hecho Pedroza. El reto, entonces, no es solo para quienestrabajan en Microbiología. Una alternativa, explorada por este grupo, es ir disminuyendo poco a poco la concentración de cromo, aplicando tratamientos cono el compostaje hasta dejar el metal lo suficientementediluido para que pueda ser incorporado a los suelos.

Transferencia de tecnología al alcance

Los resultados obtenidos por el Grupo de Investigación de Biotecnología Ambiental e Industrial de la Universid ad Javeriana son significativos no solamente para la ciencia colombiana, sino por el potencial de aplicación en el sector industrial de las curtiembres, aportando alternativas econónicas para la remoción de metales pesados y los procesos de biodecoloración. Gracias a ellos y a partir del establecimiento de procesos de transferencia tecnológica, se contribuye a quelas empresas inmplementen programas de producción más limpia, sean amigables con el medio ambienteylogen lospermisos requeridos en materia de vertimientos de aguas residuales.

Conectar la investigación científica con la realidad del sector productivo nacional es una tarea en la que viene trabajando la Universidad Javeriana a través de su Oficina de Innovación y Desarrollo. De ahí que investigadores como Aura Marima Pedroza trabajen hoy no solo en sus laboratorios, sino con empresarios del sector de las curtiemtres. A síl los proyectos de investigación seconvierten también en proyectos sociales de altoimpacta!

MAXLETHMS

"Gömer-Bertel, S., et al. (2009). "Evaluaciön de Pharerochaete cinysosporiam, Tiametes verscolor, Plearotus osteatus y Aspergillus siger como alternativa para el tratamiento de aguas residuales del curtido de pieles!' Revisalnetrocional '\&e Contaminación Ambiental, 243): 93-106. Disponibleen: http $/ /$ redalkc.uaemex.ma/isn/ini cio/A.tPdfRed.jsp?iCue=3 7011662001 . Recuperado en 21/02/2011.
"Moraks Fonsea, A. etal. (2010. "Desarollo de un bioadsorbente lamirar con Phanerochate chrysosporium hipertolerante al cadmio, al niquel y al plomo para el trata miento de aguas'. Re vista iberoamericanade Micabgï, 27 (3). Disponibleen: http//wwwerevibercemmicol. com/2010-27/111118.pdf. Recuperado en 21/00/2011.
„ Pontificia Universidad Javerana y Secretaria Distrital de Ambiente Distrital. (2010. Rueda de regocios para el a provechamiento, valorikación y disposición de residuos [Video]. Disponible en: http $/ / w$ wwiyoutubecom watch $\%=C 7 W R F S U 9 N g$. Recuperadoen $21 / 02 / 2011$.

